Assessing Remedial Dredging Effects and Effectiveness: Examples from New Bedford Harbor

William G. Nelson

Barbara J. Bergen

Office of Research & Development

National Health and Ecological Effects Research Laboratory

Atlantic Ecology Division

Narragansett, RI 02882

Introduction

- Currently, there is a growing national debate about dredging contaminated sediments, including:
 - Effects on human health and the environment
 - Effectiveness of remedial activities
- Questions and concerns relative to assessing remedial dredging effects and effectiveness can be addressed in the design and implementation of operational and long-term monitoring programs
 - Examples provided from the New Bedford Harbor (NBH)
 Superfund Site

Remedial Dredging: Questions & Concerns

- Remedial Effects:
 - Does dredging increase toxicity and bioaccumulation?
 - Does dredging contaminate previously clean areas?
- Remedial Effectiveness:
 - Can the environmental benefits of dredging be rigorously documented?

- Addressed in NBH by:
 - Pilot Study

Hot Spot Remediation

Long-Term MonitoringProgram

New Bedford Harbor Superfund Site

- Superfund Site due to high sediment PCB concentrations:
 - Upper Harbor (~200 a., red):
 - Almost entire area to be remediated
 - − Lower Harbor (~800 a., blue):
 - Depositional areas only
 - Outer Harbor (~17,000 a., green):
 - Isolated areas to be remediated

Remedial Effects: Pilot Study (1988-89)

Goal:

 Determine if dredging was feasible from an environmental and engineering perspective

Concerns:

- Will dredging increase toxicity and bioaccumulation?
- Can ecological effects be limited while dredging alternatives are evaluated?

• Approach:

- Develop site-specific decision criteria (chemical & biological)
- Real-time monitoring feedback loop linked to specific dredging operations to limit potential negative effects

Remedial Effects: Pilot Study

- Results & Conclusions:
 - With "real-time"
 monitoring feedback loop,
 observed daily effects
 were minimized and
 directly linked to causes
 - Natural disturbances (e.g., storms, wind) produced effects equivalent to remedial operations

Remedial Effects: "Hot Spot" (1994-95)

- Goals:
 - Mass removal of sediments with [PCB] > 4000 ppm
 - Limit transport of PCBs to lower harbor
- Concern:
 - Will dredging contaminate clean areas in the lower harbor?
- Approach:
 - Established criteria for:
 - Cumulative net PCB transport to the lower harbor
 - Acute and chronic toxicity

Remedial Effects: "Hot Spot" (cont.)

Results & Conclusions:

- Net PCB transport well below the decision criteria of 240 kg
- No significant increase in mean surface sediment concentrations in the lower harbor ('93=8ppm; '95=7ppm)
- No acute or chronic toxicity attributable to the dredging operation

Remedial Effectiveness: Long-Term Monitoring Program (1993 - ??)

• Goal:

Assess the effectiveness of all remedial activities

• Concern:

– Can the environmental benefits of remediation be effectively documented?

Approach:

Measure physical (e.g., grain size), chemical (e.g., PCBs), and biological (e.g., species richness) indicators both spatially and temporally using a statistically rigorous design

Remedial Effectiveness: Long-Term Monitoring Program Design

- Spatial Considerations:
 - Coverage of entire area (72 stations)
 - Probabilistic design
- Temporal Considerations:
 - Before/after each remedial phase (or every 5 years)
- Three collections to date: baseline-1993, post-Hot Spot-1995, pre-upper harbor remediation-1999

Remedial Effectiveness: Long-Term Monitoring Program Results

Total PCBs (ppm)
(GIS Analysis)

1 - 10

(ppm)

Total PCBs (ppm)
(Statistical Analysis)

Remedial Effectiveness: Long-Term Monitoring Program Results

Mussel Bioaccumulation
After 28-day Deployments
(NBH-2)

Mean Mussel Bioaccumulation for Each Operational Phase (NBH-2, -4, -5)

Remedial Effectiveness: Long-Term Monitoring Program Conclusions

Spatial Results:

- Significant differences for some indicators between the three harbor segments (e.g., species richness highest in outer harbor)
- Temporal Results:
 - Indicators changed minimally within a harbor segment (e.g., PCB sediment concentrations)
 - Hot Spot remediation occurred within only a small fraction (~5-acres) of the total upper harbor surface area (~200 acres)
- As exposures decrease with complete upper harbor remediation, monitoring will be able to assess remedial effectiveness by quantifying changes in program indicators

Summary

- Remedial Effects:
 - Does dredging increase toxicity and bioaccumulation?
 - Does dredging contaminate previously clean areas?
- Remedial Effectiveness:
 - Can environmental benefits of dredging be adequately documented?

- Addressed in NBH by:
 - Implementing a real-time feedback loop between operations and effects
 - Monitoring to limit netPCB transport
 - Establishing a statistically rigorous long-term monitoring program